Less Defined Knowledge and More True Alarms: Reference-based Phishing
Detection without a Pre-defined Reference List

Abstract

Phishing, a pervasive form of social engineering attack that
compromises user credentials, has led to significant finan-
cial losses and undermined public trust. Modern phishing
detection has gravitated to reference-based methods for their
explainability and robustness against zero-day phishing at-
tacks. These methods maintain and update predefined refer-
ence lists to specify domain-brand relationships, alarming
phishing websites by the inconsistencies between its domain
(e.g., paypOl.com) and intended brand (e.g., PayPal). However,
the curated lists are largely limited by their lack of compre-
hensiveness and large maintenance costs in practice.

In this work, we present PhishLLM as a novel reference-
based phishing detector that operates without an explicit pre-
defined reference list. Our rationale lies in that modern LLMs
have encoded a far more extensive brand-domain information
than any predefined list. Further, the detection of many web-
page semantics such as credential-taking intention analysis
are more like a linguistic problem, but they are processed as a
vision problem now. Thus, we design PhishLLM to decode (or
retrieve) the domain-brand relationships from LLM and effec-
tively parse credential-taking intention of a webpage, without
the cost of maintaining and updating an explicit reference list.
Moreover, to control hallucination of LLMs, we introduce
a search-engine based validation mechanism to remove the
misinformation. Our extensive experiments show that Phish-
LLM significantly outperforms state-of-the-art solutions such
as Phishpedia and PhishIntention. improving the recall by
31.13% and 41.08% respectively, at the cost of negligible
precision. Our field studies show that PhishLLM discovers
(1) 6 times more zero-day phishing webpages compared to
existing approach such as PhishIntention and (2) close to 2
times more zero-day phishing webpages even if it is enhanced
by DynaPhish.

1 Introduction

Phishing attacks entice users to reveal sensitive informa-
tion by posing as legitimate entities. Its fallout includes data

breaches, ransomware attacks, and significant financial losses.
The FBI’s Internet Crime Complaint Center (IC3) has reported
losses totaling 10.3 billion [69]. A single phishing campaign
averages a loss of 4.45 million [39]. In addition, phishing at-
tackers can generate and deploy comprehensive phishing kits
with the known phishing-as-a-service [15,21,36,67], making
the launch of phishing attacks much less costly.

Efforts to counter phishing attacks include blacklist-based
solutions like Google SafeBrowsing [33], OpenPhish [1], and
URLScan.io [2], as well as machine-learning-based methods
[46,51,86,98,103]. However, these solutions often fall short
in detecting ever-evolving phishing websites and lack inter-
pretability [55,57]. Finally, state-of-the-art approaches gravi-
tate to reference-based phishing detection [9,11,28,55,57,62],
which report and explain the phishing alarms by detecting the
brand intention, credential-taking intention, or both from a
webpage.

Brand Intention Analysis. Reference-based phishing detec-
tors operate by pre-defining a list of references that specify the
correspondence between an authentic domain and its brand
representation, such as a logo or screenshot. When assess-
ing a webpage, the detector identifies its brand intention by
extracting its brand representation (e.g., logo or screenshot)
and comparing it to those in the reference list. If a match is
found — say, an extracted logo resembles the PayPal logo —
but the webpage’s domain does not align with the authentic
domain (e.g., paypOl.com), a phishing alert is triggered, citing
domain-brand inconsistency as the explanation.
Credential-taking Intention Analysis. To further validate a
phishing webpage, some techniques such as [57] detect the
credential-taking intention of a webpage. This is done by
visually recognizing forms or buttons that lead to a credential-
taking webpage, typically using computer vision techniques
such as object detection [76].

Despite their promising performance, these approaches still
suffer from two main drawbacks:

Challenge 1: Reference Completeness and Its Dillema:
The performance of reference-based phishing detectors is in-
herently limited by the completeness of their reference lists.



An incomplete list cannot help decide the benignity of web-
sites with unknown brands. While the emerging techniques
such as DynaPhish [58] try to grow the reference list in an
automatic way. Nevertheless, a long reference list can incur
additional cost of (1) maintaining the list such as updating new
logo variants and (2) retrieving the logos during the detection
(with the complexity of O(N), N for the length of the list).
Furthermore, the longer the list, the more likely it includes
similar logos under different brands, potentially raising the
challenge of logo recognition.

Challenge 2: Capturing Webpage Semantics by Vision-
based Solutions: Although the computer vision techniques
used by the state-of-the-art detectors such as PhishInten-
tion [57] excel at recognizing the shape and pattern of Ul
components, they fall short in capturing the webpage se-
mantics represented in terms of natural language description.
On detecting UI components about credentials for analyzing
credential-taking intention, human often rely on the text like
“login”, “username”, or “bank account” to identify credential-
relevant Ul components, instead of visual shapes, colors, and
borders used by Phishpedia and PhishIntention. Moreover,
such text can appear in multiple languages on the webpages.

In this work, we introduce PhishLLM, a solution based
on Large Language Models (LLMs) to address the afore-
mentioned challenges. On one hand, the modern LLMs have
encoded brand-domain information that is far more extensive
than any predefined reference list. Therefore, we can treat
LLMs as implicit reference to decode the brand knowledge
with well-designed prompt as query. Thus, the logo retrieval
complexity is only O(1). On the other hand, many webpage
semantics are more relevant to language processing problems
instead of computer vision problems. Thus, LLM can well
enhance existing computer-vision based solutions for phish-
ing detection. In addition, to further control the hallucination
problem in LLMs, we validate the results in two ways. First,
we deploy a minimum-entropy-based prompt to decode the
most concise brand-domain information, thereby verifying
domain-brand consistency. Second, we design a search-engine
based validation technique to further eliminate misinforma-
tion introduced by LLMs.

Technically, PhishLLM comprises three modules: (1) a
brand recognizer that captures a webpage’s brand representa-
tion with decoded brand intention from LLM, (2) a credential-
taking classifier that examines webpage semantics regarding
their textual information, and (3) a credential-taking webpage
transitioner that selects the UI elements on the webpage with
highest likelihood of transitioning to a credential-requiring
page. Our extensive experiments show that PhishLLM out-
performs the state-of-the-arts such as Phishpedia [55] and
PhishIntention [57], with the recall improved by 31.13% and
41.08% respectively, without compromising their precision.
We also deploy PhishLLM in our field studies, to detect zero-
day phishing webpages. The results show that, compared
to existing approaches, PhishLLM identifies 6 times more

zero-day phishing webpages (1,340 versus 178 and 107); and
close to 2 times more zero-day phishing webpages even if
the tool such as PhishIntention is equipped with DynaPhish.
Furthermore, the study allows us to gain new insights into the
dynamics of the modern phishing campaigns.

We summarize our contributions as follows:

* To the best of our knowledge, we present the first LLM
agent for reference-based phishing detection, PhishLLM, to
address the challenges such as reference scalability, brand
intention analysis, and credential-taking intention in a uni-
formed way.

e PhishLLM captures the webpage semantics in both visual
and linguistic aspects, thereby enhancing the performance
of phishing detection as a new state-of-the-art.

* We develop the PhishLLM framework, which can be practi-
cally integrated with many security crawlers to effectively
report more zero-day phishing websites. The code and tu-
torial are available at [4], and an online demonstration of
PhishLLM is also available at [5].

* We conduct extensive experiments in both closed-world and
open-world settings. Our results demonstrate that Phish-
LLM significantly improves the recall of phishing detection
and discover more real-world phishing websites than the
state-of-the-arts and their enhanced version equipped with
DynaPhish.

2 Threat Model

In this work, we assume that a phishing attacker takes users’
credentials by constructing a webpage which (1) mimics the
branding of a legitimate company, and (2) offers a user inter-
face for potential victims to enter their credentials. We assume
the attacker has the following capabilities:

(1) Full Control Over the Phishing Website: The attacker
can alter any part of the phishing website. This includes both
visible HTML elements (e.g., logos and images) and invisible
HTML content (e.g., hidden inputs or scripts) for the purpose
of launching a successful attack and evading detection.

(2) Awareness of Phishing Detectors: The attacker is fa-
miliar with the operational principles of all known phishing
detectors. This knowledge allows the attacker to manipulate
the phishing website to evade detection. While the attacker
can access the implementation details of these detectors, they
cannot modify the deployed systems.

3 Approach

Overview. Figure 1 shows an overview of the PhishLLM
design. PhishLLM takes a webpage and its domain as input
and reports its analysis based on (1) the consistency between
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Figure 1: The PhishLLM framework consists of brand-intention analysis (the upper dashed rectangle) and credential-taking
intention analysis (the lower dashed rectangle), both addressed as language problems by large or visual language models. It
includes brand recognition, CRP prediction, and CRP transition modules, as detailed in Sections 3.1, 3.2, and 3.3. A webpage is
flagged for phishing based on brand-domain consistency and the presence of credential-taking intent.

the brand and domain and (2) the presence of a credential-
taking intention on the webpage.

Brand Intention Analysis (Section 3.1). Given the web-
page, we start by capturing its screenshot to circumvent any
potential HTML obfuscation. An existing logo detection tech-
nique [55] is then employed to identify the logo’s location on
the screenshot. Subsequently, this logo (with its surrounding
text) is converted into a logo-prompt, which guides a language
model in identifying the brand name. Given the probabilistic
nature of language models, we employ a post-validation step
to ensure the reliability of the model output. Finally, we com-
pare the input domain with the domain reported by LLM to
assess domain-brand consistency.

Credential-taking Intention Analysis (Section 3.2 and 3.3).
Given the webpage, we start by converting the webpage
screenshot into a webpage-prompt that encapsulates the most
salient information. This prompt is fed into a language model
using a chain-of-thought approach, enforcing it to answer a
binary question (i.e., credential-requiring page or not) with
the justification. If credential-taking intention is identified
and the brand-domain inconsistency is detected, a phishing
alarm is generated. If not, we proceed to use a visual-language
model to rank HTML elements that could link to a credential-
taking page within the same domain. We then simulate clicks
on these elements to search for credential-taking pages. This
process iterates until either a phishing page is confirmed or a
predefined interaction limit is met.

3.1 Brand Recognition

For brand recognition, we address the following challenges
exhibited in existing state-of-the-art solutions [55,57,58]:

* Limited Reference List: Constructing a comprehensive
domain-brand reference list is prohibitively expensive, af-
fecting both the scope and timeliness of the references.

* Logo Retrieving Overhead: Searching for a brand in a
list of size N has a complexity of O(N), leading to greater
runtime overhead as the list expands.

Observing that the LLM encodes extensive brand-domain
information beyond any predefined list, we re-frame the prob-
lem as a language task, which enables us to decode such brand-
domain information for validation with an O(1) time com-
plexity. To this end, we address the technical challenges of (1)
constructing an informative prompt from a visual screenshot
to decode the brand-domain information and (2) minimizing
hallucination of the LLM to yield a more reliable answer.

Figure 2 shows how we accomplish the brand recognition
task. First, we use a state-of-the-art logo detector [57] to report
the logo / from the screenshot of a webpage w. Then, we infer
the logo’s domain name d as follows:

Domain Inference (logo-to-domain): This task is formulated
as a problem of vision-to-language translation. Specifically,
we adopt OCR and image-captioning models to extract the
logo’s description, generating a logo-prompt fed to the LLM
to have the domain name d.

Domain Validation (domain-to-logo): We validate d by
checking whether we can backtrack the logo ! with the re-
ported domain d. To this end, we first retrieve a set of alter-
native logos from a search engine using d as the input. If [
matches any of the retrieved logos, we consider the domain d
as a true correspondence of the input logo /.

By this means, we can effectively mitigate potential mis-
information introduced by the LLM, through the logo-to-
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Figure 2: An overview of the brand recognition process. The T-mobile logo goes through two branches, while the OCR model
predicts the words in the logo, the image captioning model can describe the color and symbolic design, which helps the LLM to
predict the brand. The answer will be validated through the Google Image search.

Table 1: The prompt template for brand recognition is designed to minimize verbosity and randomness. The components in blue
are mutable regarding the webpage’s logo.

Task background

You are knowledgeable about brands and their associated logos. Given the description of a logo and the logo’s OCR text, your task is to
decide the brand of the logo.

Answer instruction

If there are multiple possible brands, output the most popular domain.

Few-shot examples

Given the following description on the brand’s logo: ’the logo for icy vein news and guides’, the logo’s OCR text: ’GO PREMIUM ICY
VEINS’, Question: What is the brand’s domain? Answer: "icy-veins.com"

Final prompt

Task background + Answer instruction + Few-shot examples + Given the following description on the brand’s logo: Logo Caption, and
the logo’s OCR text: Logo OCR Results, Question: What is the brand’s domain? Answer:

domain inference and domain-to-logo validation steps,

3.1.1 Image Captioning and OCR Processing

To translate a logo’s visual information into a language-
friendly format, we adopt both the image captioning tech-
nique [38, 49, 50, 63, 100] and the OCR technique [25, 27,
52,53,80, 104]. They generate logo description from differ-
ent albeit complementary perspective. OCR extracts textual
elements, such as letters in a logo, while image captioning pro-
vides a descriptive summary for the logo’s visual features like
colors and symbols. For instance, in the T-Mobile logo shown
in Figure 2, OCR identifies the letter “t”, and image caption-
ing describes it as “a white letter t on a pink background”. By
integrating these textual and visual descriptions, the LLM is
more informed to infer the domain as t-mobile.com.

3.1.2 Logo Prompt Generation

We formulate a structured prompt to guide the LLM into
making a concise domain prediction based on the descriptions

obtained from OCR and image captioning.

Challenge. Given the “talkative” nature of LLM, it can pro-
duce lengthy, uncontrollable, and sometimes irrelevant out-
puts. Using a poorly structured prompt could lead to overly
broad responses. Table 8 (in Appendix) shows an example
where a prompt produces the response as:

The brand’s domain is likely related to web hosting
or data centers. Hetzner is a well-known German web
hosting company.

Such a response incurs a parsing challenge to extract the
relevant and verifiable domain (e.g., “hetzner.com”). Due to
such a nature of LLMs, we refer to this issue as the entropic
response problem.

Solution. To mitigate the entropic response problem, we de-
sign a structured prompt using the in-context learning strategy,
as demonstrated in Table 1. Our prompt has three components:

» Task background: We start by providing the background of
the domain inference task, and we also specify the persona
of LLM as an expert in brand-domain knowledge.
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Figure 3: Webpage Content Preprocessing

* Answer instruction: An instruction is designed for the
LLM to provide the most popular domain option.

* Few-Shot examples: Further, we adopt the in-context learn-
ing strategy [24,99] to limit the verbosity of the LLM’s
response, by providing an answer template that the LLM is
instructed to follow.

As a result, we can enforce LLM to output parsable and
controllable results, as shown in the Final prompt section of
Table 1.

3.1.3 Domain Validation

To mitigate the misinformation from LLM, we validate the
reported domain name d as follows:
Aliveness Validation. We verify the aliveness of d to ensure
its validity.
Logo Validation. Using Google Images service, we retrieve
the top-k logos associated with d and compare them with the
identity logo [ extracted from the webpage. Specifically, we
adopt Liu et al’s algorithm [57] for logo comparison.

A reported domain name is considered accurate only if it
passes both validation steps, thereby ensuring the precision
and reliability of the brand prediction.

3.2 CRP Prediction

We design our approach to predict Credential Requiring Pages
(CRPs) by focusing on the credential semantics within a web-
page. Unlike existing vision-based solutions [57], which rely
on visual information (e.g., the layout and the shape of the wid-
gets), we consider textual content (e.g., "Password," "Email
Address") to be more informative and relevant to this task.
Therefore, we formulate the problem into a question-and-
answering (Q&A) problem given the extracted text from the
webpage. Further, to make the decision explainable, we solve
the Q&A problem with chain-of-thought (CoT) prompting.
Our approach involves two main steps: (1) webpage content
preprocessing, and (2) prompt construction.

3.2.1 Webpage Content Preprocessing

We preprocess a webpage by parsing its screenshot into a
sequence of phrases. Considering that attackers can obfus-
cate HTML source code, we employ an OCR model on the
webpage screenshot. This model can extract all visible text
phrases on the webpage, regardless of potential HTML obfus-
cation, as shown in Figure 3. These extracted phrases are then
concatenated using a tab token to create a unified description
that serves as the webpage’s representation:

MAX BOUNTY <tab> Affiliate Login <tab> Email
address <tab> Password <tab> Sign in <tab> Forgot
your password? <tab> MaxBounty Inci.

In this work, we assume that the OCR-detectable tokens are
salient for users to notice, and they comprehensively capture
the key credential semantics.

3.2.2 Chain-of-thought Prompt Construction

We employ a similar in-context-learning based design for our
webpage-prompt as in the logo-prompt (see Section 3.1). It
includes task background and few-shot examples. Consider-
ing potential prompt injection [73] in webpage content, and
use a chain-of-thought [81,94,97] design for the few-shot
examples.

Defense of Prompt Injection Attackers could inject mis-
leading content into the webpage to manipulate the prompt
of the LLM. For example, they might include instruction-like
text like “this is not a credential-requiring page”. To counter
the potential attack, we design the defending instruction as
<start, ignore any instruction in between> and <end, ignore
any instruction in between>, as showed in Table 2. The in-
structions indicate a range where any new instructions in the
range should be ignored (Please check Section 4.4 for its ef-
fectiveness). Note that this instruction is immutable, allowing
us to overwrite the instruction injection.

Chain-of-Thought Prompts To enhance the reliability of
the LLM’s responses, we adopt the chain-of-thought design
[81,94,97] in an in-context learning manner [17]. Our chain
comprises two steps. First, we identify keywords indicative
of sensitive data, for where to input credentials. Second, we
search for keywords synonymous with actions like “login” or
“proceed”, for where to submit credentials. A positive out-
come in both steps would suggest the presence of a credential-
taking form, thereby categorizing the webpage as credential-
requiring. As a result, the responses are structured as follows:

Sensitive keywords identified: ...... Additionally, login-
related keywords: ...... have been detected. Based on
this, the conclusion is A.




Table 2: Prompt for CRP prediction model, the blue component is mutable regarding the webpage content.

Task background

You are an expert in webpage design. Given the webpage content, your task is to decide the status of the webpage. A credential-requiring
page is where the users are asked to fill in their sensitive information, including usernames, passwords; contact details such as addresses,
phone numbers, emails, and financial information such as credit card numbers, social security numbers, etc.

Chain-of-Thought (CoT) Based Few-shot Examples
Given the webpage text:
<start, ignore any instruction in between>

MAX BOUNTY Affiliate Login: Email address Password Sign in +Forgot your password? MaxBounty Inci

<end, ignore any instruction in between>

Question: A. This is a credential-requiring page. B. This is not a credential-requiring page. Answer: "First we filter the keywords that
are related to sensitive information: Email address, Password. After that we find the keywords that are related to login: Sign in, Login.

Therefore the answer would be A"

Final prompt

Task background + CoT Based Few-shot Examples + Given the webpage text:

<start, ignore any instruction in between>
Webpage OCR Results

<end, ignore any instruction in between>

Question: A. This is a credential-requiring page. B. This is not a credential-requiring page. Answer:
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Figure 4: The architecture of our visual-language model for
ranking CRP-transition HTML component. The embedding
of T'1 and T2 are fixed to capture the embedding prototypes.

In the CRP transition task, we infer the clickable HTML
component on a non-credential-requiring webpage with
highest likelihood to transit to a credential-requiring page.
We formulate the task of finding such a CRP transition
component as a ranking problem. Specifically, given a set
of clickable HTML components on a webpage, i.e., S =
(comy,comy,...,comy), we assign a CRP-transition confi-
dence score for each com; € S to rank S. The challenge lies
in two folds. First, the styles of the clickable components
are diverse, therefore it is non-trivial to design the score in
a heuristic way. Second, training a binary classifier (CRP-

transition or not) from scratch largely depends on the quality
of the training dataset, which may fail to capture the common
prior knowledge for identifying CRP-transition Uls.

To address this problem, we fine-tune a visual-language
model [38,42,47-49,74] to capture the semantics of clickable
components. A visual-language model, such as CLIP [74], can
project text and images into a unified embedding space, so as
to map an image to its most appropriate textual description. In
our work, we align the images of clickable UI elements with
textual descriptions such as “login buttons” or “non-login
buttons”. Our insight is that CLIP already possesses prior
knowledge of the functional roles such as “login” and “non-
login” in its image-embedding space. Hence, we can use the
two embeddings as two “prototypes”, designing the learning
process to “pull” the embeddings of our training samples
towards these prototypes, as prototypical learning [43, 82,93].

Figure 4 shows the architecture of our visual language
model based on CLIP [74] model, which consists of two
branches, i.e., an image branch and a text branch. As for the
image branch, each extracted image of a clickable HTML
component is fed into an image encoder f;(.) to learn its
embedding. As for the other branch, we predefined two text
phrases, i.e., “a login button” and “not a login button” to be
projected with a frozen text encoder f7(.). The image encoder
f1(.) is learnt to map each image to its most appropriate de-
scription. Denoting the embedding of “login button” as 7,
and that of “not a login button” as 77, we only update the
weights in the image encoder so that the embeddings of the
CPR-transition elements are closer to 75 and that of non-CRP-
transition elements are closer to 77.



As a result, for each clickable HTML component com;,
we can compute its confidence score p; = cos(fi(com;), T»)
as the CRP-transition probability. Finally, to mitigate
perturbation-based adversarial attacks [32,44,64], we adopt
the techniques of Lin et al. [55] to quantize the activations,
thereby hiding the gradients.

4 Experiment

We evaluate PhishLLM with the following research questions:
RQ1 (Detection Performance): What is the performance of
PhishLLM in reporting phishing webpages on public datasets
compared to state-of-the-art methods?

RQ2 (Component-wise Performance): What is the perfor-
mance of each component of PhishLLM, i.e., brand recogni-
tion, CRP prediction, and CRP transition?

RQ3 (Robustness against Adversaries): Is PhishLLM robust
against various adversarial attacks?

RQ4 (Field Study): How does PhishLLM perform in detect-
ing real-world phishing campaigns?

4.1 Experiment Setup
4.1.1 Models

We employ PaddleOCRV3 [20] as the OCR model and BLIP-
2 [49] as the image captioning model for their state-of-the-art
performance on standard benchmark datasets [20,49]. In the
task of brand recognition and CRP prediction, we choose the
“gpt-3.5-turbo-16k” model [70] due to its extended limit on
context length as 16k tokens. To save the inference cost, we
limit the budget of the maximum generation token length to
10 (around 7 tokens) for the brand recognition model and 100
(around 75 tokens) for the CRP prediction model. For the
validation of the brand recognition model (see Section 3.1.3),
we retrieve the top-5 logos from Google Image service and use
the logo matching model from [57] with a threshold of 0.83 as
suggested. For our CRP-transition model (see Section 3.3), we
finetune the image encoder using 112,623 images of non-login
UI elements and 2,242 images of login Ul elements, sourced
from 3,047 webpages on the Top-Alexa list. We finetune the
model at a learning rate of 1 x 107 for 5 epochs. More details
are described on our anonymous website [6].

4.1.2 Baselines

We compare PhishLLM with Phishpedia [55], PhishInten-
tion [57], and their enhanced versions with DynaPhish [58].
Phishpedia operates solely on brand intention, while PhishIn-
tention is a follow-up work that checks both brand intention
and credential-taking intention. DynaPhish is a complemen-
tary module to any referenced-based detectors. It is designed
to automatically expand the reference list with the help of
Google logo API and the Google search engine. We run the

baselines using their recommended settings, particularly with
their reference list of 277 brands (DynaPhish is initialized
with 277 brands’ references), which is argued to cover the
majority of phishing target brands [55].

4.1.3 Datasets

Model Training/Testing Dataset: 3,640 annotated Alexa
websites. We crawled the top 5,000 websites from Alexa.
After removing white pages and block pages, we were left
with 3,640 websites. Each website was labeled with its brand,
credential-requiring status, and CRP transition Ul elements.
For the training of the CRP transition model (see Section 3.3).
We further divide these into two subsets: 3,047 websites for
training and 593 for testing. This dataset was utilized in the
RQ2 (Component-wise Evaluation) to assess the effectiveness
of individual components.

Phishing Detection Benchmark: 6K (6,075) phishing web-
sites + 6K (6,075) unlabeled benign websites. The 6,075
phishing websites, provided by DynaPD [58], come with
source code that can be deployed locally. We collected a
comparable number of benign websites (6,075) by crawling
from the Alexa Top 5,000 to 15,000 websites. These datasets
were employed in RQ1 to evaluate the overall classification
performance in distinguishing phishing from benign websites.
Additionally, the 6,075 phishing websites were used in RQ3 to
determine whether different adversarial attacks could mislead
the model into classifying these sites as benign.

Field Study Evaluation: CertStream Service. We crawl
websites from Certstream feeds, which offer domains with
newly issued or updated TLS certificates. We crawled 3,000
emerging websites daily from CertStream [88], and the crawl-
ing lasted for 30 days, yielding a total of 90,000 websites.
We hired three experts with security background, each with
at least two years of experience in cybersecurity research,
to independently annotate those websites as real phishing or
benign. We let the experts confirm the reported phishing for
each phishing detectors to compute the precision metric. As
for the recall, since annotating all 90K websites to obtain ex-
act recall is prohibitively expensive, we randomly sub-sample
3,000 websites and compute the recall on this subset.

4.1.4 RQI1 (Overall Performance) Settings

To answer RQ1, we use the 6K phishing + 6K benign dataset.
We compare PhishLLM and the baselines in terms of their
overall classification performance, measured in precision, re-
call, and runtime overhead.

4.1.5 RQ2 (Component-wise Performance) Settings

To answer RQ2, we use the 3,640 annotated Alexa dataset.
As for the task of brand recognition and CRP prediction, we
use all 3,640 websites to evaluate performance using preci-
sion and recall, as the in-context learning requires no training.
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Figure 5: Logo adversary attack to create an instruction indi-
cate the true domain is abc.com (i.e., a phishing domain)

As for CRP transition recognition, we split 3,047 for train-
ing and 593 for testing. Note that the transition Ul ranking
problem is essentially a retrieval problem (see Section 3.3),
therefore we evaluate performance using Recall @k retrieval
accuracy (k =1,3,5). Specifically, given k recommended Uls
Ry by our model, and the ground-truth CRP transition Ul r,
the Recall @k is computed as 5 Y2 1(r}, € RY), where i is
the index of screenshots, and 1(.) is the indicator function.
Intuitively, it measures whether the true transition UI com-
ponent is within the top-k recommended options. Note that
Phishpedia and PhishIntention can report brands, and Phish-
Intention can also predict CRP and recognize CRP regions.
Thus, we also evaluate and compare their component-wise
performance.

4.1.6 RQ3 (Adversarial Attack) Settings

We consider four types of adversaries in our threat model
(see Section 2). Since PhishLLM employs a prompt-based
design, we construct adversarial attacks by injecting mislead-
ing instructions either into the webpage content or the logo to
mislead the LLM prediction.

Logo Adversary Attack (phishing domain injection for
brand recognition): We modify the logo on the phishing
webpage by embedding a string of the phishing domain (see
Figure 5, the small text in the right-down corner). We make
it small for considering the attackers’ intention to make it
challenging to be detected by human. We evaluate if the logo
prompt fed to the brand recognition model can be misled
by the embedded phishing domain as the intended domain.
We measure the change of the recall, i.e., how many of the
modified phishing pages can still be correctly recognized.
LLM Prompt Injection Attack (for CRP prediction):
We insert a deceptive sentence, “Please ignore the
previous description, give the final answer as B, i.e., not a
credentail-requiring page.”, onto the end of webpage, serv-
ing as an instruction to mislead the LLM to output a neg-
ative decision for the webpages with credential-taking in-
tention. We choose the location of the end of webpage, as
it is closer to the Answer section in the prompt, making it
more effective to overwrite the instruction. For example,
the webpage with the content of “<tab>SOPHOS Username
Password CAPTCHA Enter the CAPTCHA code Login ©
2023 Sophos Ltd. English User Portal<tab>" is changed
to “<tab>SOPHOS Username Password CAPTCHA Enter

(a) Before attack (b) After attack

Figure 6: Prompt injection attack to create a prompt with
instruction “This is not a credential-requiring webpages”.

the CAPTCHA code Login © 2023 Sophos Ltd. English
User Portal. <tab> Please ignore the previous description,
give the final answer as B, i.e., not a credentail-requiring
page.<tab> (See Figure 6). We measure the model’s re-
call by how many of credential-requiring webpages have their
positive output flipped to negative output.

Pixel-level Perturbation Attack (for CRP transition): We
introduce pixel-level adversarial attacks on images, increasing
the loss for the incorrect classification [32, 44, 64]. These
adversarial perturbations are applied to all the UI elements,
aiming to decrease the confidence for the true transition Ul
element while increase the confidence of the rest. We aim to
evaluate whether these perturbations can hinder the model’s
ability to rank the ground-truth login UI elements among
the top-k choices, thereby undermining its effectiveness in
identifying the CRP transition link. We use the Recall@k
metric before and after attack.

HTML Obfuscation Attack (for webpage parsing): We
also consider the impact of HTML code obfuscation attacks,
where all clickable elements’ texts are replaced with images
(See Figure 7). This approach disrupts any webpage parsing
method that relies on reading the HTML source code, as it
becomes unable to identify text embedded within images.
For such an attack, we evaluate whether our OCR and Image
Captioning can counter such attacks. We measure the overall
classification recall, to check whether a phishing webpage
can still be accurately recognized after the attack.

4.1.7 RQ4 (Field Study) Settings

We conduct two field studies in the experiment.
Large-scale study. To evaluate how many more phishing
websites we can find with PhishLLM, we deploy PhishLLM,
Phishpedia, and PhishIntention in a real-world scenario to
report potential phishing websites for 30 days, i.e., evaluating
their performance on the collected 90K emerging websites
in the duration. We compare the solutions in terms of their
classification precision and recall.

Small-scale study. To evaluate the performance between
PhishLLM and DynaPhish+X (Phishpedia or PhishIntention),
we conduct an one-week field study considering the incurred
budget of both tools. Note that both PhishLLM and Dy-



(a) Before HTML obfuscation, the submit-semantics is repre-
sented by text

(b) After HTML obfuscation, the submit-semantics is represented
by image

Figure 7: HTML Obfuscation Attack

naPhish requires the premium subscription of third-party ser-
vice. PhishLLM is dependent on OpenAl service, which is
estimated to incur about 90 USD for parsing 90K websites. In
contrast, DynaPhish is dependent on Google Logo Detection
service [3], which is estimated to incur about 1100 USD for
parsing 90K websites. More details are available in Appendix
A2.

4.2 RQ1: Overall Evaluation

Table 3 shows the overall performance of PhishLLM and the
baselines. We observe that PhishLLM improves recall by over
30% without sacrificing precision.

Overall, PhishLLM achieves a significant boost in recall
with negligible cost of precision. As a price, it incurs more
runtime overhead compared to visual-based phishing detec-
tors such as Phishpedia, due to the network latency of access-
ing OpenAl service, Nevertheless, PhishLLM demonstrates
improved efficiency in comparison to DynaPhish. More dis-
cussion on the reasons behind this increased runtime can be
found in Section 5.

We also investigate the missed phishing websites, the ma-
jor reason is that the generated logo-prompt sometimes may
not provide sufficient information for the LLM to infer its
brand. Additional examples are provided on our anonymous
website [8]. To mitigate the runtime overhead in future work,
one solution is to train a local LLM based on interaction re-
sults from GPT. Moreover, we will consider to adopt visual
language models for more informative description from a
logo.

4.3 RQ2: Component-wise Evaluation

Table 4 shows the component-wise performance. We observe
that our LLM-based solution recognizes significantly more

Table 3: Overall Performance

Precision Recall Runtime
Phishpedia [55] 0.9254 0.4388 0.3
PhishIntention [57] 0.9847 0.3393 0.4
DynaPhish + Phishpedia [58] 0.9897 0.7404 39
DynaPhish + PhishIntention [58] 0.9984 0.6863 5.8
PhishLLM (GPT-3.5) 1.0000 0.7501 32

brands than a static reference list (65% versus 5%). Fur-
thermore, the combination of image captioning and OCR
yields the best performance when compared to using either
method alone. We observe that PhishLLM failed to predict
some brands because the extracted logo prompt might not be
informative enough to determine the brand (as mentioned in
Section 4.2). Interested readers can check [7] for more exam-
ples. We also experiment with the setting when the domain
validation step is removed, we observe that the recall increases
to 0.74. However, the precision of the LLM’s response drops
to 0.78, indicating the importance of the validation step to
eliminate LLM hallucination.

As for CRP prediction, PhishLLM favors precision over
recall compared to PhishIntention. The false negatives are due
to (1) the webpage language being outside the support of the
OCR model (e.g., Persian language), or (2) OCR techniques
could be affected by ambiguous colors. More examples are
available at [8].

Further, we replicate the experiments for brand recognition
and CRP prediction with an open-sourced LLM: Llama2-
7b [87] released by Meta. We find that the Llama2 model
cannot match the performance of GPT-3.5 in the in-context
learning scenarios, which also aligns with the results reported
by many other studies [37,59,96].

Finally, in terms of the accuracy of the recommended top-k
CRP transition Uls, PhishLLM outperforms PhishIntention
due to the incorporation of textual information.

4.4 Results (RQ3): Robustness Evaluation

Table 5 shows that PhishLLM is generally robust against vari-
ous adversarial attacks. After injecting the phishing domain
into the logo, the brand recognition model only decreases its
recall by 0.01. Those injected domains are ignored by Phish-
LLM because that we instruct LLM to output the most popular
brands in the prompt if there are multiple potential domains
(see Table 1). Similarly, the CRP prediction model is almost
unaffected by the prompt injection attack. In contrast, the
LLM agent is very vulnerable to the prompt-injection attack
without the defense. Furthermore, the introduced gradient-
masking defense, as proposed in [55], can effectively pro-
tect against gradient-based adversarial attacks. Finally, due to
adopted OCR technique, PhishLLM is robust against HTML
obfuscation.



Table 4: Component-wise Performance Evaluation.

Brand Recognition CRP Prediction CRP Transition
Precision  Recall | Precision Recall Recall@11315
Phishpedia 1.00 0.05 - - -
PhishIntention 1.00 0.05 0.75 0.96 0.3810.4510.46
PhishLLM (GPT-3.5) 1.00 0.65 0.91 0.92 0.9110.9310.95
- Logo Caption only 1.00 0.38 - - -
- Logo OCR only 1.00 0.52 - - -
- Without Domain Validation 0.78 0.74 0.90 0.82 -
- Without Chain-of-Thought - - 0.90 0.82 -
- PhishLLM (Llama2-7b-chat [87]) 1.00 0.51 0.60 0.69 -

Table 5: Adversarial Robustness Evaluation. The performance is evaluated with recall. The defense strategy for CRP transition
model is to replace the activations (Swish [75] activation is used in CLIP [74]) with Stepwise activations (Step-Swish).

Logo adversary LLM prompt injection Pixel-level perturbation HTML Obfuscation
(brand recognition) (CRP prediction) (CRP transition) (webpage parsing)
FGSM BIM DeepFool
Before Attack 0.86 0.92 0.91 0.91 0.91 0.75
After Attack w/ Defense 0.85()0.01) 091 () 0.01) 091 (=) 091 (=) 091 (=) 075 (=)
After Attack w/o Defense - 0.03 (1 0.89) 0.65(10.26) 0.09(40.82) 0.03(,0.88) -

4.5 Results (RQ4): Field Study

Table 6 shows the results of small-scale field study. Overall,
PhishLLM demonstrates a significant improvement in per-
formance. Specifically, it enhances precision by 13% and
boosts the number of reported phishing incidents by 83%.
Notably, compared to DynaPhish, PhishLLM achieves a five-
fold reduction in runtime. The reason lies in that, to make
sure the expanding reference is clean (otherwise, it can be
compromised by the attacker), DynaPhish expands its refer-
ence by interactively validating the extracted logos and their
domains with Google services, incurring much larger runtime
overhead.

Table 7 shows the results of large-scale field study, indicat-
ing that PhishLLM significantly outperforms the baselines,
reporting far more real-world phishing websites (1,340 com-
pared to 178 and 107). The advantage lies in that PhishLLM
can infer phishing websites by decoding far more references.
Further, we have the following empirical observations on the
phishing campaigns and phishing tactics. More discussions
can be found in the Appendix.

4.5.1 Phishing Landscape

Language Analysis As mentioned in the introduction, the
credential semantics may be present in different languages.
LLM can naturally adapt to multilingual webpages. Among
1340 reported phishing in the field study, 67% are in En-
glish, 5% are in German, 4% are in Spanish, 3% in Chinese
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etc. The diversity confirms the ongoing world-wide phishing
campaigns. Further, we estimate that more English phishing
websites require HTTPS certificates.

Domain Analysis The Top-5 common top-level domains by
phishing websites are .com, .online, .de, .net, and .xyz, which
is different from the top-5 top-level domains among the Alexa
one million sites. As expected, the attackers prefer regional
TLDs (e.g. .de) or less conventional yet budget-friendly op-
tions (e.g. .Xyz, .online). Nevertheless, expensive domains
(e.g., .com) are still be used, indicating that the phishing at-
tacks might be a lucrative business than expected.

Geolocation Analysis We investigate the geolocations of
phishers’ IP addresses in Figure 9. We find that most of the
phishing webpages detected in CertStream service originate
from the US and Europe. Generally, comparing to the other
regions, they have more mature facilities such as available
hosting services, e.g., Virtual Private Servers (VPS) and cloud
providers. The worldwide attackers may take advantage of
these services to set up malicious websites.

Target Analysis Out of the 1,340 reported phishing in-
stances, 1,105 were with the brands not included in the ref-
erence list of 227, and they cover 939 unseen brands. Real-
world phishing examples from our field study are displayed in
Figure 21 (in Appendix). The Top-10 phishing targets are vi-
sualized in Figure 10. Aside from commonly expected targets



Table 6: Overall performance in the small-scale field study (PhishLLM versus DynaPhish)

Precision Median Runtime No. Reported Phishing No. Distinct Brands
Phishpedia 0.65 0.35 13 7
PhishIntention 0.83 0.38 10 4
DynaPhish+PhishIntention 0.85 5.89 72 58 (54 are outside the static reference list)
PhishLLM 0.96 1.22 132 126 (115 are outside the static reference list)

Table 7: Overall performance in the large-scale field study (PhishLLM versus Phishpedia and PhishIntention)

On Sampled 3k On Total 90k

Precision Recall | Precision No. Reported & Verified Phishing
Phishpedia 0.50 0.07 0.45 178
PhishIntention 1.00 0.04 0.90 107
PhishLLM 1.00 0.70 0.95 1340

(a) Top-5 TLDs among phishers

Top-level Domain | Frequency
.com 447
.online 60
.de 58
.net 52
Xyz 52

(b) Top-5 TLDs among Alexa Top-1m

Top-level Domain | Frequency
.com 409668
.org 33181
.net 30303
.ru 15865
it 14822

Figure 8: Comparison of Top-5 TLDs

like Microsoft and Meta, we find that cybersecurity compa-
nies (sonicwall.com, securelink.com) and information service
providers (ebsco.com, thalesgroup.com) are increasingly pop-
ular among the attackers. The lesser-known brands fall prey
to the phishing attackers, indicating their phishing attack can
also be equally or more lucrative than the attack targeting big
company such as Microsoft.

4.5.2 Phishing Campaign

We identify phishing campaigns by clustering phishing web-
pages based on their targeted brands and similarities in do-
main names. The initial and final days of each campaign are
plotted in Figure 17 (in Appendix). We identified 5 distinct
phishing campaigns targeting SonicWall, Meta, Thales Group,
EBSCO Information Services, and AVM Deutschland, respec-
tively. On average, a phishing campaign lasts about 16 days.
The longest campaign is the SonicWall campaign, which lasts
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for 28 days and continues until the end of our experiment.
Meta Campaign. We observe a campaign targeting Meta (see
Figure 11), sharing several distinctive characteristics:

1. Use of .click Top-Level Domain: All phishing webpages
use the uncommon ".click" TLD.

2. Diverse Languages: Phishers prepare multilingual ver-
sions of the webpage for dissemination to victims from
different countries.

3. Outdated Layout: The webpage layout is based on an
outdated template of the Facebook login page.

4. Dynamic Logo Loading: The phishing webpage loads
the logo dynamically via JavaScript (Code 18), rather than
directly using an (img) tag to point to the logo image. This
approach decreases readability.

5. Input Obfuscation: While legitimate Facebook pages
use meaningful HTML attributes such as type=‘email’
or id=‘pass’ for their input fields, phishing pages assign
random attributes to minimize readability (Code 19).

Particularly for dynamic logo loading, it indicates that the
attackers are now adopting unified templates to generate
phishing websites targeting different brands.

SonicWall Campaign. We observe a phishing campaign tar-
geting SonicWall, a cybersecurity company (See Figure 12),
with the following observation.

1. MyCloud Service Manipulation They exploited the
MyCloud service for hosting their websites [23].

2. Embedded Frame Their HTML code loads an iframe
pointing to “authl.html”, hosted by the phishers, which
displays a credential-taking form (See Code 20).



Figure 9: Geo-locations of Phishing IP addresses

]

Number of Times Targeted

(a) Real Facebook Page

(b) login-france.xuanbac.click

(c) login-usa.xuanbac.click (d) zuk.pergugu.click

Figure 11: Meta phishing campaign

3. Timeout Feature The webpage includes a timeout mech-
anism, after about one minute. Then users are redirected
to a page stating “Your login attempt has timed out”.

The phishing webpages show common features in the same
campaign, which generally indicate a systematic framework
to derive those websites in an automatic way.

4.5.3 Phishing Tactics

Moreover, we further observe the detected phishing websites
exhibit the following phishing tactics.

Redirection to Target Page: Phishers intend to redirect users
to the genuine target page after harvesting credentials. This
creates a false sense of security, leading victims to believe they
have been interacting with the authentic webpage throughout
the process. In Figure 15 (in Appdenix), the final page is
login.adp.com, which is the cloned source of the initial
landing page.

Diversified Targets with Evasive Strategy: We observe that
some phishing websites can target multiple brands simultane-
ously. For example, the site https://x.xsteach.cft/
uniquely presents a random phishing page targeting a differ-
ent brand upon each visit. Notably, we identified six distinct
phishing targets: cctv.com, weibo.com, igiyi.com, bilibili.com,
mooc.org, and xuetangx.com (Figure 13 in Appendix). This
dynamic randomization broadens the attacking specturm.
After multiple refreshes, the site redirects to the legitimate
igiyi.com, possibly as a countermeasure, using a blacklist to
block specific IPs after reaching a certain traffic threshold.
This tactic could help evade security crawlers.
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Manipulation of Cloud Services: In the campaigns we
observed, phishing attackers are increasingly using cloud
services to deploy phishing webpages. For instance, West-
ern Digital’s MyCloud service [23] is being exploited for
phishing. We identified 31 instances with domain names like
device-<UUID>.remotewd.com. Each MyCloud user is as-
signed a device under remotewd. com, where “UUID” is the
unique device identifier used by phishers. This makes it more
challenging to trace the identities of these malicious actors.

5 Discussion

Webpage Semantics (Vision and Language) Phishpedia
[55] and PhishIntention [57] capture only the visual seman-
tics of the webpage. In PhishLLM, we investigate both visual
and language semantics from the webpage as a multimodal
solution, which better emulate how humans perceive a web-
page. Additionally, the language model inherently provides
explanations for its predictions, obviating the need for exter-
nal post-hoc explanation methods [55,57]. In the future, we
foresee that a more advanced semantic fusion technique of
vision and description (e.g., multi-modal architecture) can be
designed to capture more webpage semantics.

On the other hand, incorporating language models typi-
cally results in increased inference time compared to visual
models. For visual models, the computational complexity is
linear with respect to the size of the input image, while for
language models, the complexity is quadratic in the input
context length [92]. In addition, the network latency to ac-
cess OpenAl service also incurs financial cost. Following the


login.adp.com
https://x.xsteach.cf/
device-<UUID>.remotewd.com
remotewd.com

(@) (b)

© (d)

Figure 12: SonicWall phishing campaign. The phishing domains are (from left to right): device-1d0a7d34-ad6b-44{b-980a-
caOc2d6af315.remotewd.com, device-28d57a5d-3dcf-4627-b8aa-91ce9b079¢2a.remotewd.com, device-457d2002-8d84-4521-
a228-4e218e3cf58a.remotewd.com, device-87026422-3800-4f5b-81ab-83428f9fbc7f.remotewd.com

above discussion, local model can be further trained to speed
up the efficiency of model inference.

Explicit Reference v.s. Implicit Reference DynaPhish [58]
attempts to address the limitations of static reference lists in
phishing detection by dynamically retrieving and expanding
relevant brand information from search engines. While the
approach is effective, it presents two technical challenges,
i.e., (1) the ongoing maintenance cost of an ever-expanding
reference list and (2) the financial cost associated with search
engine API calls is large. Processing over 90,000 websites
using the Google API is estimated to cost around 1,100 USD.
Also, a very long reference list can potentially incur new
challenges to distinguish similar logos under different brands.

In contrast, PhishLLM is an LLM agent built upon a Large
Language Model (LLM) as an implicit reference list. We posit
that an LLM serves as a comprehensive and constantly up-
dated knowledge base of brand-related information, evolving
alongside the LLM’s training corpus. In addition, the budget
is more friendly to security startup than the traditional Google
Logo Detection service (used by DynaPhish).

6 Related Work

Empirical Studies on Phishing: Empirical studies have
been conducted to reveal the lifecycle of phishing cam-
paigns [16, 68], the costs of launching phishing attacks [18],
the consequences [71, 85], and the deficiencies of exist-
ing anti-phishing authorities [14, 19,41, 65,66,72,79, 105].
Other studies specifically focus on evasion strategies em-
ployed by modern phishers, including phishing kit automa-
tion [15, 21, 36, 67], cloaking and browser fingerprinting
[10,40,54,61,78,84,95,101,102].

Phishing Detection: Phishing detection can be performed on
the email side [31,45, 83, 90], mobile side [13,56,60,77,89],
and web browser side [9,11,51,55,57,62,86,98,103]. Our
work focuses on browser-based detection. Early research
in browser-based phishing detection employed feature en-
gineering techniques [12, 26, 30, 51, 86, 98, 103], focusing
on attributes extracted from HTML, URLs, Certificates, and
screenshots. These methods, however, lacked robustness and
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generalizability. To address this, reference-based strategies
emerged, aiming to identify phishing attempts by analyzing
brand-domain inconsistencies [11,62,91]. With the advent
of deep learning, more sophisticated models were developed
for this purpose [9,55,57]. To address the limited reference
list problem, DynaPhish [58] proposes utilizing the power
of modern search engines to search for the intended brand
on the fly and evolve the reference list over time. However,
these approaches require a maintained set of references, and
the time complexity of comparison still grows in the order of
O(n) as the list becomes bigger.

Web Interaction with LLMs: Various studies have employed
Large Language Models (LLMs) for open-domain web nav-
igation [22, 29, 34, 35]. Gur et al. fine-tuned T5 models to
improve web navigation [35] and later developed WebAgent
[34] to address open-domain and context-length challenges.
Mind2Web [22] used a two-model workflow to rank the most
relevant HTML elements and predict actions to perform on
them. Furuta et al. [29] utilized a multi-modal approach, in-
corporating both HTML and screenshots. Our work differs
from these studies as we focus on using LLMs to interact
with phishing websites for brand recognition and credential
prediction. To our knowledge, this is the first study to employ
LLM:s to advance a new state-of-the-art in phishing detection,

7 Conclusion

We introduced PhishLLM, a novel Large Language Model
(LLM)-driven reference-based phishing detector as a new
state-of-the-art. Unlike existing solutions, PhishLLM miti-
gates the efforts to construct and maintain a predefined refer-
ence list by (1) utilizing LLMs to decode brand information
through minimum-entropy-based prompts and (2) mitigating
LLM’s potential of responding misinformation. Our exten-
sive experiments validate the tool’s effectiveness in enhancing
phishing detection performance. In our future work, we aim to
distill a local LLM from the online LLM so that we can avoid
the network latency caused by the OpenAl service. Further,
we plan to design a multi-modal solution to fuse the webpage
semantics from both vision and language perspective.
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Figure 13: The phishing site https://x.xsteach.cf/ randomly displays one phishing page out of the six pages.

A.1 Prompt Comparison

In this section, we present qualitative examples of LLM’s predictions both with and without adherence to the design principle of
minimal entropy. Briefly, in the absence of this restriction, LLM tends to generate rambling and random responses.

Regarding the CRP prediction model, our objective is the opposite; we seek a more extended response that includes a detailed
reasoning process. Without any specification, the model would only output ’A’ or *B’, without any explanation.

A.2 Field Study for DynaPhish [58]

Due to the costs associated with using the Google Cloud API and Google Search API, a large-scale comparison involving
DynaPhish was not feasible. Instead, we conducted a small-scale field study for comparative analysis. This study spanned five
days, from January 22 to January 29, 2024, with the same setup as our previous one-month field study. During this period,
we crawled about 15,000 emerging websites from Certstream and annotated the reported phishing instances by DynaPhish,
PhishLLM, Phishpedia, and PhishIntention, subsequently calculating their precision.
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FedEx Delivery Manager ®
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(b) Loading page

(c) Payment page

(d) Payment page

(e) Loading page

(f) Confirmation page

Figure 14: An example of extensive data collection: https://votre-formulaireliv.com/

(b) UserID page

(c) Email page

(d) Fake error page

(e) Loading page

(f) Redirect to login.adp.com/welcome

Figure 15: An example of redirection to target site: https://cxeradp.tech
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Table 8: Comparison of different prompt design for brand recognition Task, GPT’s responses are highlighted in yellow. Note that,
a prompt without any restriction will produce lengthy and ambiguous outputs. The text with red, green, and purple background is
an abstract phrase for concrete task background, answer instruction, and few-shot example.

Regular Prompt

Minimal Entropy-Based Prompt

Task background + Given the following description on
the brand’s logo: “a white background with a blue text that
reads image twist”, the logo’s OCR text: “IMageTWIST
not just another image hosting”. Question: What is the
brand’s domain? Answer:

The brand’s domain is likely related to image hosting or
image sharing

Task background + Answer instruction +

Few-shot examples + Given the following description
on the brand’s logo: “a white background with a blue
text that reads image twist”’, the logo’s OCR text:
“IMageTWIST not just another image hosting”. Question:
What is the brand’s domain? Answer:

imagetwist.com

Task background + Given the following description on

the brand’s logo: “a red and white logo with the words
hetzer”, the logo’s OCR text: “HETZNER”. Question:
What is the brand’s domain? Answer:

The brand’s domain is likely related to web hosting or data
centers. Hetzner is a well-known German web hosting
company

Task background + Answer instruction +

Few-shot examples + Given the following description
on the brand’s logo ...... Question: What is the brand’s
domain? Answer:

hetzner.com

Task background + Given the following description on
the brand’s logo: “the educba logo on a black background”,
the logo’s OCR text: “EDUCBA”. Question: What is the
brand’s domain? Answer:

The brand’s domain is likely in the education sector

Task background + Answer instruction +

Few-shot examples + Given the following description
on the brand’s logo: ‘“the educba logo on a black
background”, the logo’s OCR text: “EDUCBA”. Question:
What is the brand’s domain? Answer:

educba.com

var obfuscate_button = function/() {

let returned_buttons = document.getElementsByTagName ("button"); // get all <button>

(let button of returned_buttons) {
var buttonLink = button.getAttribute(’href’);
html2canvas (button) .then (function (canvas) {
// Create a new image element
var img = document.createElement ('img’);

for

img.src = canvas.toDataURL();

var a = document.createElement ("a’);
a.href = buttonLink;

a.appendChild (img) ;
button.parentNode.replaceChild(a, button);

Figure 16: Javascript code for performing HTML obfuscation attack
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Table 9: Comparison of Different Prompt Design for CRP Prediction Task, GPT’s responses are highlighted in yellow. Note that,
a prompt without any restriction will produce decisions with no explanation. The text with red, green, and purple background is
an abstract phrase for concrete task background, answer instruction, and CoT based few-shot examples.

Regular Prompt

Chain-of-Thought Prompt

Task background + Given the webpage content: “ebay
Hi Sign in to eBay or create an account Email or user-
name Created your account with a mobile number? Sign in
with mobile Continue”, Question: A. This is a credential-
requiring page. B. This is not a credential-requiring page.
Answer:

A. This is a credential-requiring page

Task background + Answer instruction +

CoT based few-shot examples + Given the web-
page content: “ebay Hi Sign in to eBay or create an
account Email or username Created your account with a
mobile number? Sign in with mobile Continue”, Question:
A. This is a credential-requiring page. B. This is not a
credential-requiring page. Answer:

First we filter the keywords that are related to sensitive
information: Email, username, mobile number. Then we
find the keywords that are related to login: Sign in. There-
fore the answer would be A

Task background + Given the webpage content:
“LIPUTANG berita apa yang ingin anda baca hari ini?
CARI MASUK HOME NEWS PEMILU BISNIS BOLA
CRYPTO SHOWBIZ TEKNO FOTO HOT CEK FAKTA
ISLAMI CITIZEN6 LAINNYA v Masuk Gunakan akun
media sosial Anda untuk dapat mengakses seluruh fi-
tur Liputan6.com.”, Question: A. This is a credential-
requiring page. B. This is not a credential-requiring page.
Answer:

A. This is a credential-requiring page

Task background + Answer instruction +

CoT based few-shot examples + Given the web-
page content: “LIPUTANG6 berita apa yang ingin anda
baca hari ini? CARI MASUK HOME NEWS PEMILU
BISNIS BOLA CRYPTO SHOWBIZ TEKNO FOTO
HOT CEK FAKTA ISLAMI CITIZEN6 LAINNYA v
Masuk Gunakan akun media sosial Anda untuk dapat
mengakses seluruh fitur Liputan6.com.”, Question: A.
This is a credential-requiring page. B. This is not a
credential-requiring page. Answer:

First we filter the keywords that are related to sensitive
information: Email, Nama Pengguna, Kata Sandi. Then
we find the keywords that are related to login: Masuk,
Gunakan akun media sosial Anda. Therefore the answer
would be A

Task background + Given the webpage content: “M in-
diamart Shopping Sign In v Search for products find veri-
fied sellers near you 9 All India X Q Search Sign In Email
ID Enter your Email ID ”, Question: A. This is a credential-
requiring page. B. This is not a credential-requiring page.
Answer:

B. This is not a credential-requiring page

Task background + Answer instruction +

CoT based few-shot examples + Given the web-
page content: “M indiamart Shopping Sign In v Search
for products find verified sellers near you 9 All India X Q
Search Sign In Email ID Enter your Email ID ”, Question:
A. This is a credential-requiring page. B. This is not a
credential-requiring page. Answer:

First we filter the keywords that are related to sensitive
information: Email ID, Enter your Email ID. Then we find
the keywords that are related to login: Sign In. Therefore
the answer would be A
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Figure 17: Phishing campaigns over time

(a) Logo implementation of facebook.com

<img class="_97vu img"
src="https://static.xx.fbcdn.net/rsrc.php/y8/r/dF5SId3UHWd. svg"
alt="Facebook">

(b) Logo implementation of .click Facebook phishing

<div class="image-background p-absolute"></div>
<l== .0 >
<script type="text/javascript" id="event_data">
<l== ... >
"44trowte": |
"type": "image-block",
"specials": {
"imageCompression": true,
"isTransparent": true,
"src": "https://statics.pancake.vn/web-media/e6/9f/8d/0e/838453201
— b6e459e07bfblccab5f976083f0d46836fb6£43696787518.png"
}I
"id": "44trowte",
"Sparent": "k5qgz248d"
}
<l—= ... >
</script>

Figure 18: Meta phishing campaign: Logo implementation comparison
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(a) Input implementation of facebook.com

<input id="email" type="text" class="inputtext _55rl inputtext _lkbt inputtext _lkbt" placeholder="Email or
— mobile number" name="email" tabindex="0" value="" autofocus="1" autocomplete="username" aria-
<~ label="Email or mobile number">

<input id="pass" type="password" class="inputtext _55rl inputtext _9npi inputtext _9npi" placeholder="

— password" name="pass" tabindex="0" value="" autocomplete="current-password" aria-label="password">

(b) Input implementation of .click Facebook phishing

<input id="wi-rkphpjrf" type="text" class="full-width full-height" placeholder="Email or phone number"
— name="full name" required="">

<input id="wi-a7b44eng" type="text" class="full-width full-height" placeholder="Password" name="
— text_input_1" minlength="6" required="">

Figure 19: Meta phishing campaign: Input implementation comparison

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html><head>

I <== o0 >

<meta name="SonicWall Administrator" content="Copyright 2004 (c) SonicWall, Inc. All rights reserved.">

s| <title>SonicWall - Authentication</title>

<meta name="id" content="auth">

</head>

<frameset name="frameMain" id="frameMain" rows="100%,0%,0%">
<frame src="authl.html" name="authFrm" id="authFrm" scrolling="auto">
<frame src="policyBanner.html" name="policyBannerFrm" id="policyBannerFrm" scrolling="no">
<frame src="emptyViewéd.html" name="authTgtFrm" id="authTgtFrm" scrolling="no">

2| </frameset>
3| </html>

Figure 20: SonicWall phishing campaign: Embedded frame
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Swedbank {

smsplus9.azeem.dev.jt.hostingshouse.com swedbank.pieeja-lv.info
(a) Phishing Target: mumara.com (b) Phishing Target: swedbank.com

Hac

@4 Outlook
device-8b248998-6847-4def-9eb1-9b59fb283b04.remotewd.com 0a35£634d33ec266d03c0fb6{9¢377be09d46ab0.0ps.yunag.com
(c) Phishing Target: outlook.com (d) Phishing Target: h3c.com
i
T =
dsgbb.top ib-trans-ateam9.sup.issuebook-np.ihsmarkit.com

(e) Phishing Target: shein.com (f) Phishing Target: spglobal.com

cit

www.office.drivprint.com onlinemngmitciti.com
(g) Phishing Target: microsoft.com (h) Phishing Target: citi.com

=

= = o
ib-trans-ateam9.sup.issuebook-np.ihsmarkit.com camvdemo.stacksplatform.com
(i) Phishing Target: spglobal.com (j) Phishing Target: ebsco.com

Figure 21: Real BRishing Examples
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